【論文紹介】トランスフォーマーを超える予測性能SCINet

最新AI論文をキャッチアップするAI-SCHOLARへの投稿をご紹介します。NeurIPS 2022採択論文です。

時系列予測モデルであり、複雑な時間的ダイナミクスを持つ時系列を効果的にモデル化するSCINetを提案しています。SCINetは、豊富な畳み込みフィルタを持つ階層的なダウンサンプル-畳み込み-相互作用構造です。異なる時間分解能の情報を反復的に抽出・交換し、予測可能性を高めた効果的な表現を学習します。
実世界の様々な時系列予測データセットにおいて、既存の畳み込みモデルやTransformerベースのソリューションと比較して、予測精度の大幅な向上を達成しています。

AI-SCHOLAR | AI:(人工知能)論文...
トランスフォーマーを超える予測性能SCINet 3つの要点✔️ NeurIPS 2022採択論文です。時系列予測モデルであり、複雑な時間的ダイナミクスを持つ時系列を効果的にモデル化するSCINetを提案しています。✔️ SCINetは、豊...
よろしければシェアをお願いします
  • URLをコピーしました!
  • URLをコピーしました!

お問い合わせ

お気軽にお問い合わせください

受付時間 9:00-18:00 [土・日・祝日除く]

目次